ملتقى الفيزيائيين العرب > منتديات أقسام الفيزياء > منتدى الفيزياء النووية | ||
بسرعة ممكن مساعدة |
الملاحظات |
|
أدوات الموضوع | انواع عرض الموضوع |
|
#1
|
|||
|
|||
بسرعة ممكن مساعدة
هلا تكرم احدكم وشرح ما هذا اظنها تحاليل لمادة مشعة
204Hg *ADOPTED LEVELS, GAMMAS 94NDS 199411 204 80 I 64 43 0 0 0 0 H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$ XA204AU B- DECAY XB204TL EC DECAY XC204HG(E,E') XD205TL(E,E'P) XE204HG(N,N'G) XF204HG(D,PNG) XG204HG(P,P') XH204HG(D,D') XI204HG(A,A') XJCOULOMB EXCITATION XK205TL(MU-,NG) XL205TL(D,3HE) XM208PB(D,6LI) 204Hg Q -347.3 15 7495.0 19 8852 15 1993AU05 CL T From BE2 in COUL. EX., except as noted. BEL values for 2CL L GE 3 multipolarities are from (E,E'), they are given here in 3CL single particle units. CG E$From 204AU B-, (N,N'G), (D,PNG), (MU,NG) CG M$From (D,PNG), except as noted CL J(P)$Based on L transfer in (P,P'), and from (e.e') CL J$JPI from (N,N'G) are based on G(THETA) and on excitation function. 2CL JPI from (E,E') are based on cross sections as function of 3CL momentum transfer. Natural parity states were excited preferentialy. CL E$For E GE 4406 see levels observed in (E,E') 1 L 0 0+ STABLE 1X L XREF=ABCDEFGHIJKLM 1 CL Isotope shifts: 1977Du03, 1975Ro10, 1972Bo09, 1978Le09 1 CL Charge distribution studied (1979Ha08). 2 L 436.552 8 2+ 40.4 PS 4 2X L XREF=ACEFGHIJKLM 22 L MOME2=+0.40 20 $ MOMM1=+0.80 20 (1986KO02,1989RA17) 2 CL J from COUL. EX., (A,A') 1 G 436.551 8 100 E2 0.04 13 G BE2W=11.95 8 1 CG BE2 from COUL. EX. and from (E,E') 3 L 1128.35 8 4+ 2.9 PS 2 3X L XREF=ACEFGHIJKLM 32 L BE4W=5.5 7 3 CL J COUL. EX. 2 G 691.80 10 100 E2 0.013 23 G BE2W=17.0 12 4 L 1635.76 10 0+ 4X L XREF=CDEGL 4 CL J$from (E,E'), L=0 in (D,3HE), G(THETA) in (N,N'G) 4 CL M(E0)=1.1 e(fm){+2} 7 2 G 1199.2 1 100 5 L 1716.76 10 (2) 5X L XREF=EG 5 CL J$from (N,N'G), G(THETA) excludes J=0 2 G 1280.2 1 100 6 L 1828.76 10 (2) 6X L XREF=AFKME 6 CL J$from (N,N'G) 2 G 1392.20 10 100 7 L 1841.42 7 1+,2+ 7X L XREF=AEGKL 7 CL J$G's to 0+ and 2+, L=2 in (D,3HE). Probable excitation in 72CL (P,P') favors 2+ 2 G 1404.90 10 100 5 1 G 1841.40 10 69 3 8 L 1851.35 9 (2+) 8X L XREF=AEHF 8 CL J G's to 2+ and 4+, LOGFT=5.3, (N,N'G) 3 G 723.00 10 100 3 2 G 1414.80 10 39.3 12 ? 1 G 1851.7 4 1.1 LE 9 L 1947.68 9 1+,2+ 9X L XREF=ACEFKL 9 CL J G's to 0+ and 2+, L=2 in (D,3HE) 2 G 1511.10 10 100 3 1 G 1947.76 20 5.3 4 10 L 1989.34 10 (2+,3-) 10X L XREF=ACEFGJK 10 CL J$LOGFT=5.8, GAMMA to 2+, probably excited in COUL. EX. and (E,E') 2 G 1552.78 10 100 ? 11 L 2088.61 10(1,2+) ? 11X L XREF=ACE ? 11 CL J GAMMA to GS 1 G 2088.60 10 100 12 L 2094.46 20 3(-),4(+) 12X L XREF=EGC 12 CL J$G to 2+, J GE 3 from excit function in (N,N'G) 2 G 1657.9 2 100 13 L 2117.39 9 (2)+ 13X L XREF=EAL 13 CL J$G(THETA) in (N,N'G), G to 0+, L=2 in (D,3HE) 2 G 1680.8 1 100 8 1 G 2117.5 2 41 8 14 L 2131.26 20 14X L XREF=CEG 2 G 1694.7 2 100 15 L 2140.84 10(1,2,3) 15X L XREF=EAK 15 CL J LOGFT=6.0, GAMMA to 2+ 2 G 1704.28 10 100 16 L 2191.05 13 6+ 0.30 PS 4 16X L XREF=CEFGJK 16 CL J$E1 from 7-, COUL. EX. GAMMA to 4+,L=6 in (P,P') 3 G 1062.70 10 100 E2 0.005 3 CG M$from COUL. EX. 33 G BE2W=19 3 17 L 2236.05 22 17X L XREF=EFM(*) 3 G 1107.7 2 100 18 L 2263.00 13 5- 18X L XREF=CEFGKLM(*) 182 L BE5W=10.8 25 18 CL J$(E,E'), stretched E1 to 4+ in (D,PNG), J GE 3 in (D,6LI). 182CL Possibly CONF=((P,S1/2,-1)(P,H11/2,-1)) 3 G 1134.65 10 100 E1 19 L 2264.06 20 1,2,3 19X L XREF=AEIKM(*) 19 CL J$LOGFT=6.2, (N,N'G) 2 G 1827.5 2 100 20 L 2295.66 10 20X L XREF=E 2 G 1859.1 1 100 21 L 2300.35 13 (2+) 21X L XREF=AEF 21 CL J$G's to 2+,4+, J LE 2 from excitation function in (N,N'G) 3 G 1172.00 10 100 11 ? 2 G 1863.3 3 21 6 22 L 2300.70 17 7- 6.7 NS 5 22X L XREF=FKC 222 L BE7W=3.9 15 22 CL T$from (D,PNG) 22 CL J$(E,E') 16 G 109.65 11 100 E1 0.3 163 G BE1W=1.8E-5 2 23 L 2359 5 23X L XREF=CD 24 L 2385.9 4 1(+),2+ 24X L XREF=AEL 24 CL J$G to 0+, L=0,2 in (D,3HE) 1 G 2385.9 4 100 ? 25 L 2395.92 25 (2+,3-) ? 25X L XREF=ACG ? 25 CL J$possible G's to 2+,4+ in 204AU B-, probably excited in (P,P'), ? 252CL (E,E') 7 G 554.7 3 100 15 2 G 1959.0 4 10 LE 26 L 2465.46 20 (1,2,3)+ 26X L XREF=ACEGL 26 CL J$L=2 in (D,3HE), possible observation in (E,E'), (P,P') favors 2+ 2 G 2028.9 2 100 27 L 2514.55 22 27X L XREF=CEGJ 3 G 1386.2 2 100 28 L 2568.95 13 28X L XREF=CE 3 G 1440.6 1 100 29 L 2628.26 10 29X L XREF=CDE 2 G 2191.7 1 100 30 L 2675.33 18 3- 30X L XREF=CEGIJ 302 L BE3W=24 2 30 CL J$from (e.e'), (A,A') and (P,P'). Collective octupole vibration 3 G 1547.0 2 79 16 2 G 2238.7 3 100 20 31 L 2724.05 24 GE 5 31X L XREF=CF 31 CL J G deexcitation in (D,PNG) 21 G 423.7 2 100 20 ? 19 G 460.5 10 25 AP 32 L 2726.7 3 (2+,3) 32X L XREF=AKC 32 CL J GAMMA to 4+, LOGFT=6.0 6 G 897.9 6 81 51 3 G 1598.3 3 100 19 33 L 2760.60 24 GE 3 33X L XREF=CFKLMG 33 CL J GAMMA to (5)- and possibly to 6+ 18 G 497.6 2 100 20 ? 16 G 569.5 10 30 AP 34 L 2812.83 24 3- 34X L XREF=ACG 342 L BE3W=8.0 8 34 CL J$L=3 in (P,P'), (E,E') 2 G 2376.26 24 100 35 L 2866 4 35X L XREF=CGL 36 L 2925 37 36X L XREF=C 37 L 3021 4 4+ 37F L FLAG=P 37X L XREF=CG 372 L BE4W=4.95 18 38 L 3112 4 (4+) 38F L FLAG=P 38X L XREF=CGM 39 L 3190 15 2+,3+ 39X L XREF=CL 39 CL J$from (D,3HE) 40 L 3227 4 (5-) 40F L FLAG=P 40X L XREF=CG 41 L 3315 4 3- 41F L FLAG=P 41X L XREF=CGL 412 L BE3W=6.3 7 42 L 3364 4 5- 42F L FLAG=P 42X L XREF=CG 422 L BE5W=9.5 13 43 L 3417 4 43X L XREF=CG 44 L 3439 4 44X L XREF=G 45 L 3496 5 45X L XREF=G 46 L 3528 6 46X L XREF=CGM 47 L 3585 4 47X L XREF=CG 48 L 3618 6 48X L XREF=G 49 L 3664 9 49X L XREF=CG 50 L 3697 5 50X L XREF=G 51 L 3712 7 51X L XREF=CG 52 L 3750 4 52X L XREF=CGL(*) 53 L 3779 4 53X L XREF=CGL(*) 54 L 3833 8 54X L XREF=CG 55 L 3869 7 55X L XREF=CGL 56 L 3923 9 56X L XREF=GC 57 L 3954 10 57X L XREF=CG 58 L 4113 5 4+ 58F L FLAG=P 58X L XREF=CG 582 L BE4W=6.6 8 59 L 4164 5 59X L XREF=CG 60 L 4225 6 60X L XREF=G 61 L 4262 5 61X L XREF=G 62 L 4321 6 62X L XREF=G 63 L 4356 6 63X L XREF=CG 64 L 4406 6 64X L XREF=CG |
#2
|
|||
|
|||
مشاركة: بسرعة ممكن مساعدة
204Hg *204AU B- DECAY 1984CR01 94NDS 199411
204 80 I 18 23 0 15 1204AU 0 H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$ 204AU P 0 (2-) 39.8 S 9 3800 SY N 0.91 10 1 1.0 CN NR Based on the assumption that IB- to GS is negligible 1C Natural HG(N,P) E(N)=14 MEV; gammas GE(LI), GG, G(T) (1984Cr01) CG From 1984Cr01, assignment to 204AU based on T1/2 and on 2CG GG-coin; other: 1972Pa06. For EG<400 sensitivity was reduced by shield. CG E(D) Assigned to both 204AU and 202AU (1984Cr01) CG M From adopted G's 1C HG(N,P) E(N)=14-15 MEV; gammas GE(LI), GG-coin scin-GE(LI), BG-coin 2C scin-GE(LI). Earlier assignment by 1967Wa23 of T1/2=4 S, to 204AU, is 3C not confirmed by 1972Pa06. CG All intense gammas are in coin with EB>500. CB Endpoint energy of AP 3300 with T1/2=30-40 S can belong 2CB to the decay of either 202AU or 204AU. 1967Wa23 report 3CB E(B-)=3500 200 with T1/2 AP 30 S and E(B-)=4500 300 with 4CB T1/2 AP 4 S. 1972Pa06 deduce a weak B- feeding to 204HG GS 5CB from the high RI(204HG)/RI(202HG) ratio. 1984Cr01 deduce IB- to GS<10% 6CB from estimate of (N,P) cross sections; other IB- branches are from 7CB G+CE intensity balance, assuming negligible feeding to GS CB LOGFT Uncertainty does not include the uncertainty in Q-. CL J From adopted levels 0 G 654.9 4 9.0 8 0F G FLAG=D 0 CG T1/2=70 S 20, may be due to 203AU B- decay (the value in 02CG the literature is 53 S 2 for EG AP 690 KEV. 654.6G was reported by 03CG 1972Ba53) 0 G 1817.4 6 0.16 7 1 L 0 0+ B 10 LT 8.5 GT 1U? S B EAV= 1567.92 $ 2 L 436.57 5 2+ 1 G 436.56 5 100 4 E2 0.04 3 L 1128.30 134+ B 2 LT 8.4 GT 1U? S B EAV= 1078.48 $ 2 G 691.74 15 26.4 8 E2 4 L 1828.72 12 (2) B 21.7 6 5.4 1 S B EAV= 808.98 $ 2 G 1392.15 11 24.2 6 5 L 1841.39 11 1+,2+ B 4.5 3 6.1 1 S B EAV= 803.57 $ 2 G 1404.82 12 4.24 20 1 G 1841.38 19 2.91 11 6 L 1851.29 11 (2+) B 30.9 7 5.3 1 S B EAV= 799.35 $ 3 G 723.00 16 24.4 7 2 G 1414.72 11 9.6 3 ? 1 G 1851.7 4 0.28 LE ? 1F G FLAG=D 7 L 1947.70 11 1+,2+ B 26.5 7 5.2 1 S B EAV= 758.41 $ 2 G 1511.10 12 27.7 7 1 G 1947.76 20 1.47 11 8 L 1989.33 15 (2+,3-) B 5.7 2 5.8 1 S B EAV= 740.80 $ 2 G 1552.76 14 6.51 19 9 L 2088.78 19 (1,2+) B 1.1 1 6.5 1 S B EAV= 698.83 $ 1 G 2088.77 19 1.15 7 10 L 2117.0 5 (2)+ B 0.20 7 7.3 5 2 G 1680.4 5 0.22 7 2 CG E$placement by evaluator based on the placement of the 1680.9 1 22CG GAMMA in (N,N'G) 11 L 2140.81 17 1,2,3 B 3.1 1 6.0 1 S B EAV= 676.99 $ 2 G 1704.24 16 3.42 14 12 L 2264.37 19 1,2,3 B 2.0 2 6.2 1 2 G 1827.80 18 2.23 14 2 CG E$placement by evaluator based on the placement of the 1827.4 1 22CG GAMMA in (N,N'G) 13 L 2300.3 8(2) 3 G 1172.0 7 1.8 4 14 L 2386.4 9 1(+),2+ B 0.10 5 7.2 3 1 G 2386.4 9 0.11 5 1 CG E$placement by evaluator based on the placement of the 2385.9 4 12CG GAMMA in (N,N'G) ? 15 L 2395.6 4 (2+,3-) ? 15 CL E$not seen in (N,N'G) ? 5 G 554.7 3 3.0 5 2 G 1959.0 4 0.29 LE 2F G FLAG=D 16 L 2466.0 3 (1,2,3)+ B 0.34 6 6.9 1 2 G 2029.4 3 0.38 6 2 CG E$placement by evaluator based on the placement of the 2028.9 2 22CG GAMMA in (N,N'G) 17 L 2726.7 3 (2+,3) B 0.6 2 6.0 2 S B EAV= 436.60 $ 4 G 897.9 6 0.30 19 3 G 1598.4 3 0.37 7 18 L 2812.84 25 3- B 0.66 7 5.9 1 S B EAV= 402.44 $ 2 G 2376.26 24 0.72 7 204Hg *204TL EC DECAY 94NDS 199411 204 80 I 1 0 0 1 1204TL 0 H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$ 204TL P 0 2- 3.78 Y 2 347.3 15 N 0.0290 12 1 CN BR$from I(XK)=1.64% 7 of 1990Sc08, K fluorescent yield=0.965 and 2CN CK/EC=0.5867 16 (based on Q=347.3 15 and theory for first forbidden 3CN unique EC decay). Other: 1962Le05, 2CN 1964Ch17, 1961Jo12, 1966Kl02, 1967Ha39, 1980La02. 1C CL/CK=0.42 5 (1961Jo12), 0.48 4 (1963Ro32), 0.60 6 (1964Ch17), 2C 0.55 5 (1966Kl02). From Q value and EC decay theory CL/CK=0.513 4 C 3.2E-5 5 internal bremsstrahlung photons per CK (1973La17). 2C 2.17E-5 26 photons per CK (1979Zi02). Q+ of 357 15 deduced 3C (1979Zi02). CG No gammas detected. XK absolute intensities studied in 2CG 4PI geometry. XKA2=0.47 2, XKA1=0.81 3, XKB1=0.273 10, XKB2=0.081 3 3CG per 100 decays (1990Sc08). 1 L 0 0+ E 100 9.521 21 1U S E CK=0.5867 16 $CL=0.3007 11 $CM+=0.1126 5 CE E E(EC)=385 20 (1973La17), 376 20 (1956Ju07), 393 10 (1962Bi04) 204Hg *204HG(E,E') 1989BUZP 94NDS 199411 204 80 I 60 0 0 0 0 0 H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$ C 93.7% 204HG, 6LI-204HG amalgam target. E(E)=83-477 MEV, 2C mag spect. FWHM=8E-3% to 3E-2%. PWBA analysis (1989BuZP) CL J$From 1989BuZP, based on fitting the cross sections as functions of 2CL the momentum transfer with PWBA calculations. CL E$The listed uncertainties are statistical only; the systematic 2CL errors are estimated by 1989BuZP to range from 2 KEV for levels below 3CL 2462 KEV to 5 KEV for levels above 4413 KEV. 1 L 0 0+ 2 L 436.7 23 2+ 22 L BE2=0.429 5 3 L 1128 6 4+ 32 L BE4=45E-3 6 4 L 1636 12 0+ 4 CL M(E0)=1.06 e(fm){+2} 70 5 L 1944 33 6 L 1974 60 7 L 2047 70 8 L 2090 AP 9 L 2124 30 10 L 2200 60 11 L 2262 5 5- 112 L BE5=41E-3 9 12 L 2299 7 7- 122 L BE7=32E-4 13 13 L 2359 5 14 L 2397 12 15 L 2462 29 16 L 2507 40 17 L 2570 AP 18 L 259E1 12 19 L 2673 6 3- 192 L BE3=42E-2 4 20 L 2719 7 21 L 2730 AP 22 L 2760 AP 23 L 2813 7 3- 232 L BE3=14E-2 2 24 L 2883 43 25 L 2925 37 26 L 3017 28 4+ 262 L BE4=40E-3 13 27 L 3096 18 28 L 3187 70 29 L 3222 24 30 L 3316 9 3- 302 L BE3=109E-3 13 31 L 3361 8 5- 312 L BE5=36E-3 5 32 L 3426 15 33 L 3475 14 34 L 3539 70 35 L 3594 35 36 L 3670 AP 37 L 3720 AP 38 L 3750 70 39 L 3820 70 40 L 3860 AP 41 L 3919 34 42 L 3968 29 43 L 4033 15 44 L 4100 17 4+ 442 L BE4=54E-3 6 45 L 4147 14 46 L 4210 AP 47 L 4245 7 48 L 4348 11 49 L 4380 AP 50 L 4413 15 51 L 4493 9 52 L 4539 7 53 L 4610 27 54 L 4663 27 55 L 470E1 10 56 L 4723 7 57 L 4815 13 58 L 4895 24 59 L 4915 26 60 L 4959 60 204Hg *204HG(N,N'G) 1989GA07 94NDS 199411 204 80 I 27 31 0 0 0 0 H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$ C E(N)=1.5-3 MEV, 98% 204HG, G(THETA) GE(LI), excitation function 2C 1.5 to 3 MEV (1989Ga07). CG RI$At E(N)=2.80 MEV, uncertainties include 5% syst uncertainty for 2CG EG>500 and 10% syst uncertainty for EG<500 CL J$From 1989Ga07 based on G(THETA), G deexcitation, and excit function. 0 G 615.7 3 2.8 11 0 G 738.1 3 3.7 14 0 G 806.7 3 5.9 13 1 L 0 0+ 2 L 436.57 4 2+ 1 G 436.58 4 1000 3 L 1128.37 9 4+ 2 G 691.8 1 331 18 4 L 1635.77 11 0+ 2 G 1199.2 1 27 3 5 L 1716.77 11 (2) 2 G 1280.2 1 26 3 6 L 1828.87 11 2+ 2 G 1392.3 1 79 5 7 L 1841.49 8 1,2+ 2 G 1405.0 1 36 3 1 G 1841.4 1 25.3 24 8 L 1851.42 9 (2+) 3 G 723.0 1 55 4 2 G 1414.9 1 22.2 22 9 L 1947.67 11 (2+) 2 G 1511.1 1 68 5 10 L 1989.37 11 (2+) 2 G 1552.8 1 62 4 11 L 2088.51 10 (2+) 1 G 2088.5 1 27 3 12 L 2094.48 21 3,4+ 2 G 1657.9 2 14.7 21 13 L 2117.48 10 2+ 2 G 1680.9 1 32 3 1 G 2117.5 2 13 3 14 L 2131.28 21 2 G 1694.7 2 11.8 21 15 L 2140.88 11 (1,2,3) 2 G 1704.3 1 29 3 16 L 2191.17 14 6+ 3 G 1062.8 1 15.1 18 17 L 2236.07 14 3 G 1107.7 1 31 3 18 L 2263.07 14 5- 3 G 1134.7 1 31 3 19 L 2263.98 11 2 G 1827.4 1 37 3 20 L 2295.68 11 2 G 1859.1 1 29 3 21 L 2300.32 13 (2) 3 G 1172.0 1 27 3 2 G 1863.3 3 5.8 17 22 L 2385.9 4 1 G 2385.9 4 19 4 23 L 2465.48 21 2 G 2028.9 2 17 3 24 L 2514.57 22 3 G 1386.2 2 10.8 18 25 L 2568.97 14 3 G 1440.6 1 7.7 15 26 L 2628.28 11 2 G 2191.7 1 4.4 10 27 L 2675.34 18 (3-) 3 G 1547.0 2 9.2 19 2 G 2238.7 3 11.6 23 |
#3
|
|||
|
|||
مشاركة: بسرعة ممكن مساعدة
204Hg *204HG(P,P') 1991HO07 94NDS 199411
204 80 I 47 0 0 0 0 0 H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$ C E(P)=28 MEV, 98.2% 204HG, mag spect FWHM=17 KEV, p'(THETA), coupled 2C channel calc (1991Ho07). CL J$From 1991Ho07 based on p'(THETA) and on unpublished (E,E') data of 2CL 1989BuZP CL S$BETA(L) values are quoted based on coupled-channels analysis 1 L 0 0+ 2 L 437 3 2+ -0.069 3 L 1128 4 4+ -0.049 4 L 1632 11 0+ 5 L 1714 6 6 L 1836 5 7 L 1985 7 8 L 2099 8 9 L 2137 9 10 L 2183 4 6+ -0.013 11 L 2257 4 5- 0.033 12 L 2293 4 7- -0.021 13 L 2398 9 14 L 2463 9 15 L 2509 5 16 L 2672 4 3- 0.089 17 L 2710 4 18 L 2759 4 19 L 2813 4 3- 0.046 20 L 2866 4 21 L 3021 4 (4+) 0.016 22 L 3112 4 (4+) 0.016 23 L 3227 4 (5-) 0.020 24 L 3315 4 3- 0.048 25 L 3364 4 5- 0.049 26 L 3417 4 27 L 3439 4 28 L 3496 5 29 L 3528 6 30 L 3585 4 31 L 3618 6 32 L 3664 9 33 L 3697 5 34 L 3712 7 35 L 3750 4 36 L 3779 4 37 L 3833 8 38 L 3869 7 39 L 3923 9 40 L 3954 10 41 L 4113 5 4+ 0.039 42 L 4164 5 43 L 4225 6 44 L 4262 5 45 L 4321 6 46 L 4356 6 47 L 4406 6 204Hg *204HG(D,PNG) 1984SC19 94NDS 199411 204 80 I 14 16 0 0 0 0 H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$ C 98% 204HG, E(D)=25 MEV. PG-coin GE(LI) plastic scin; GG; CE(T) 2C magnetic spectrometer; G(THETA) (1984Sc19) CG RI Estimated uncertainty 10-20% CG M From G(THETA) and CE (1984Sc19) CL J$From 1984Sc19 based on G(THETA) and EKC, and from adopted levels 1 L 0 0+ 2 L 436.60 10 2+ 1 G 436.6 1 100 E2 3 L 1128.50 15 4+ 2 G 691.9 1 63 4 L 1828.6 5 (2) 2 G 1392.0 5 3.1 5 L 1851.69 24 (2+) 3 G 723.2 2 3.7 2 G 1414.8 6 L 1947.3 5 1+,2+ 2 G 1510.7 5 2.6 7 L 1988.7 5 (2+,3-) 2 G 1552.1 5 2.6 8 L 2190.90 25 6+ 3 G 1062.4 2 17 9 L 2236.0 4 3 G 1107.5 3 2.9 3 CG E$placement based on the placement of the 1107.7 1 GAMMA in (N,N'G) 10 L 2262.9 4 5- 3 G 1134.4 3 18 E1 3 CG M from CE and G(THETA) this is a stretched E1. 11 L 2300.5 4 (2) 3 G 1172.0 3 3.1 3 CG E$placement based on the placement of the 1172.0 1 GAMMA in (N,N'G) 12 L 2300.5 4 7- 6.7 NS 5 12 CL J see adopted levels 8 G 109.6 2 6.0 E1 13 L 2724.2 4 GE 5 11 G 423.7 2 4.0 ? 10 G 460.5 10 1 AP 14 L 2760.4 4 GE 3 10 G 497.5 2 3.2 ? 8 G 569.5 10 1 AP 204Hg *204HG(D,D') 1972MO12 94NDS 199411 204 80 I 4 0 0 0 0 0 H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$ C E(D)=17 MEV, 95.8% 204HG; FWHM=9 KEV; d'(THETA) (1972Mo12). 1 L 0 2 L 443 8 3 L 1140 12 ? 4 L 1851 15 204Hg *204HG(A,A') 1981BA45 94NDS 199411 204 80 I 5 0 0 0 0 0 H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$ 1C 84% 204HG, E(A)=27 MEV, magnetic spectrograph A'(THETA), FWHM=40 KEV 2C coupled-channels analysis (1981Ba45). CL J From 1981Ba45 based on A'(THETA). 1 L 0 0+ 2 L 437 5 2+ 2 CL BETA(2)=0.061 3 L 1128 5 4 L 2272 5 5 L 2674 5 (3-) 5 CL BETA(3)=0.076 octupole vibration 204Hg *COULOMB EXCITATION 94NDS 199411 204 80 I 7 5 0 0 0 0 H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$ C 98% 204HG sulphide target. 1040-MEV 208PB beam. Particle-GAMMA coin 2C GE(LI) and position-sensitive plate avalanche detectors, G(THETA). 3C BE2 values are normalized to 0.0849 for the 2+ to 0+ transition (an 4C average of 1981Es03 and 1979Bo02). A 5% systematic error was included 5C in the quoted uncertainties in BE2 (1985Ag01). 1C 4HE 13.5-16.5 MEV, 12C 45-56 MEV, 16O 63-65 MEV; 93% 204HG 2C annular SI detector for backward scattering. E(P)=18 MEV E-DE counter 3C telescope, Winther-de Boer analysis (1981Es03). 1C Natural HG; 15 MEV 4HE, 56-64 MEV 16O; gammas GE(LI); MOME2 of 2C 436 level measured by reorientation effect (1979Bo02) C E(A)=11-15 MEV, E(16O)=56 MEV, Winther-de Boer analysis (1977BoYP) C E(16O)=36 MEV, RI(THETA) in vacuum and HE gas (1974Do01) 1C E(12C)=54, 55 MEV. 92.6% 204HG, mag spect. BE3 deduced (1991Li03). CG RI From 1985Ag01 CG E$From 1985Ag01, 1979Bo02 CG M$From 1981Es03, 1985Ag01 CL J From adopted levels 1 L 0 0+ 2 L 436.55 32+ 22 L MOME2=0.40 20 (1981ES03) 2 CL MOME2: 0.39 20 or 0.24 20 (1979Bo02) 21CL From attenuation of G(THETA) of recoils in vacuum 22CL OMEGA**2*TAU=4.1 7 (changed by evaluator from 4.6 8 of 1974Do01 because 23CL of change in T1/2(436 level) from 36 PS to 40.4 PS); therefore, 24CL MOMM1(204HG)/MOMM1(198HG)=0.89 8. Using MOMM1(198HG)=1.1 2 25CL (1977Ha26,1964Ko15) we get MOMM1(204HG)=1.0 3. Others: 1970Ka09, 2xCL 1973Di15 1 G 436.55 3 100 E2 0.04 1 CG BE2=0.0849 8 (from 0.0846 10 (1981Es03) and 0.0854 12 1xCG (1979Bo02)) 3 L 1128.45 21 4+ 2 G 691.9 2 19.9 6 E2 0.013 2 CG BE2=0.121 9 (1985Ag01), 0.19 6 (1981Es03) 4 L 1987.9 (2+,3-) ? 2 G 1551.3 2 0.11 1 ? 2 CG Placement from (D,PNG) and 204AU B- decay, adopted ? 22CG EG=1552.78 10 5 L 2191.0 4 6+ 3 G 1062.5 3 1.36 4 E2 0.005 3 CG BE2=0.139 17 (1985Ag01) 6 L 2515.1 6 3 G 1386.6 5 0.24 3 3 CG E$placement based on (N,N'G), adopted EG=1386.2 2 7 L 2682 3 3- 7 CL E seen in (P,P') of 1981Es03 and 1991Ho07 72 L BE3=0.37 5 7 CL The BE3 value corresponds to 22 W.u. ^and is comparable 72CL to the values for collective 3- states in the even HG isotopes GE 198 73CL (in (E,E') the measured BE3W=24 2) 204Hg *205TL(E,E'P) 1987QU01 94NDS 199411 204 80 I 4 0 0 0 0 0 H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$ C E(E)=410 MEV, spectra at the missing momentum values of 2C 15, 80, and 160 ^MEV/c were measured. FWHM=135 KEV for the proton 3C energy. CL S$Spectroscopic factor for 3s1/2 is listed. 1 L 0 0.32 3 2 L 1640 10 0.22 2 3 L 2370 20 0.08 1 4 L 2620 30 0.05 1 204Hg *205TL(MU-,NG) 94NDS 199411 204 80 I 14 13 0 0 0 0 H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$ C The decay scheme is suggested by evaluator on the basis of 2C 204AU B- decay and (D,PNG). CL J From adopted levels CG RI Per 100 MU- stops in natural TL (1972Ba53) CG E From 1972Ba53 except for the 436G from 1978Du01 CG E(E) Assigned to 204HG by evaluator 1 L 0 0+ 2 L 436.551 8 2+ 1 G 436.551 8 25.4 41 3 L 1128.26 17 4+ 2 G 691.71 17 7.6 9 2F G FLAG=E 4 L 1827.9 4 (2) 2 G 1391.3 4 0.68 17 2F G FLAG=E 5 L 1841.4 10 1+,2+ S 2 G 1404.82 6 L 1948.2 3 1+,2+ 2 G 1511.6 3 1.5 3 2F G FLAG=E 7 L 1990.5 4 (2+,3-) 2 G 1553.9 4 0.96 24 2F G FLAG=E 8 L 2140.5 4 1,2,3 2 G 1703.9 4 0.7 2 2F G FLAG=E 9 L 2191.0 11 6+ S 3 G 1062.7 10 L 2262.9 3 5- 3 G 1134.67 20 3.0 6 3F G FLAG=E 11 L 2264.6 5 1,2,3 2 G 1828.0 5 0.50 16 12 L 2300.6 11 7- 9 G 109.68 12 0.98 18 9F G FLAG=E 13 L 2726.2 6 (2+,3) 3 G 1597.9 5 0.62 17 3F G FLAG=E 14 L 2760.7 4 GE 3 10 G 497.8 3 0.77 22 10F G FLAG=E 204Hg *205TL(D,3HE) 1989GR09 94NDS 199411 204 80 I 21 0 0 0 0 0 H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$ C JPI(target)=1/2+ 1C Enriched 205TL, E(D)=45 MEV, magnetic spectrometer. Results are 2C preliminary, no uncertainties given (1983AgZY) 1C 99.5% 205TL, E(D)=52 MEV, polarized beam average polarization of 0.54 2C FWHM=110 KEV for vector-polarized beam, FWHM=70 KEV for unpolarized 3C beam. DWBA calc normalized to 208PB(D,3HE) (1989Gr09) CL E,L$From 1989Gr09, DE AP 15 KEV. See also: 1987Cl01 CL J$From 1989Gr09 based on L transfer, vector analyzing power and 2CL previous NDS assignments. CL E(C) Unresolved multiplet CL S$Spectroscopic factors for L=0 are from 3s1/2, for L=2 below 2.7 2CL MEV are from 2d3/2 and above 2.7 MEV from 2d5/2 (except for 3320 3CL level 2d3/2), for L=5 are from 1h11/2. For cases of two L values, 4CL the ^S factors are listed in the order s1/2,d3/2,h11/2,d5/2. In 5CL cases where one of the L values is even and the other is odd, it 6CL is clear that at least two levels with opposite parities contribute. 1 L 0 0+ 0 .21 2 L 437 2+ 2 .18 3 L 1130 4+ 4 L 1630 (0,1)+ 0 .16 5 L 1840 1+,2+ 2 .14 6 L 1950 2+ 2 .28 7 L 2060 AP (1,2,3)+ 2 .05 8 L 2120 (1,2)+ 2 .14 9 L 2250 5- 2,5 .04, .21 9F L FLAG=C 10 L 2380 (0,1,2,3)+ 0,2 .05, .04 10 CL J$JPI=1+ if only one state contributes 11 L 2470 (1,2,3)+ 2 .03 12 L 2650 (0,1,2,3)+ 0,2 .08, .03 12F L FLAG=C 13 L 2770 2,5 .20, .16 13F L FLAG=C 14 L 2890 2,5 .16, .10 14F L FLAG=C 15 L 3050 2,5 .12, .05 15F L FLAG=C 16 L 3190 (2,3)+ 2 .41 17 L 3320 2,5 .07, .05 17F L FLAG=C 18 L 3460 (1,2,3)+ 2 .13 19 L 3600 2,5 .03, .11 19F L FLAG=C 20 L 3770 (1,2,3)+ 2 .05 21 L 3890 (0,1,2,3)+ 0,2 .05, .06 204Hg *208PB(D,6LI) 1979BE14 94NDS 199411 204 80 I 9 0 0 0 0 0 H TYP=FUL$AUT=M. R. SCHMORAK$CIT=NDS 72,409 (1994)$CUT=1-Sep-1994$ 1C E(D)=55 MEV; magnetic spectrograph, E DE counter; 99% 208PB, 2C FWHM=150-300 KEV; 6LI(THETA). ALPHA clustering calculated (1979Be14) CL J From 1979Be14 based on DWBA, natural parity favored 1 L 0 0+ 2 L 430 50 2+ 3 L 1085 50(4+) ? 4 L 1810 50 5 L 2240 50 GE 3 6 L 2740 50 GE 2 7 L 2800 50 8 L 3040 50 GE 2 9 L 3550 50 GE 2 |
#4
|
|||
|
|||
مشاركة: بسرعة ممكن مساعدة
أخي ما حولك أحد لو أعرف كان علمتك أنا آسف
|
@ عبد الله الجهني @ |
مشاهدة ملفه الشخصي |
البحث عن كل مشاركات @ عبد الله الجهني @ |
#5
|
|||
|
|||
مشاركة: بسرعة ممكن مساعدة
نعم امور بسيطه
|
#6
|
|||
|
|||
مشاركة: بسرعة ممكن مساعدة
الأمر سهل و غاية في البساطة
هذه عملية تحليل إشعاعي للمادة و المراحل الإنتقالية و المتتابعة و الأرقام قد تكون أوزان للمواد المتفككة أو المواد المتراكمة أو الموادذات النسب المتفارقة التي تسمى بمواد ما بعد اإشعاع و الرموز E,M,L,K,X رموز للمواد الناتجة من المراحل الإنتقالية و هناك للعلم مواد أكثر تعقيدا في حال تحليلها أو تفكيكها أعتقد أن هذه المادة المشعة عند تحليلها و انتاج هذه المعادلات فهي مادة مشعة بسيطة جدا و لتدعيم بحثك أنصحك بالرجوع للمتخصصين لبحث أكثر دقة شكرا martin |
#7
|
|||
|
|||
مشاركة: بسرعة ممكن مساعدة
و لكن أنا غير متأكد من كون هذه معادلة إشعاعية فأنا في جامعتي
رأينا معادلات التحليل الإشعاعي كانت مختلفة قليلاً و لكن ربما هذه ربما تكون معادلة و حللتها بشكل مبسط في ردي السابق الله يعينك martin |
#8
|
|||
|
|||
مشاركة: بسرعة ممكن مساعدة
اشكرك اخي مارتين نعم انها تحاليل لمادة مشعة هي الزئبق 204hg 204 وقابلية تحويل الزئبق العادي الى زئبق مشع
وهذه المعادلة وغيرها ربما قد يساعد على الوصول الى نتيجة مارايك اريد التفاعل والتوضيح ربما لانني من اصحاب الكيمياء الصيدالانية |
#9
|
|||
|
|||
مشاركة: بسرعة ممكن مساعدة
للزئبق عشرة نظائر سبعه منها مستقره ثم
نظير غير مستقر و نظيران ينتجان أشعة بيتا السالبه و أحد هذين النظيرين صناعى و هو المعروف بالزئبق الأحمر. وهذه النظائر هي: ( 80 بق 196 ) و هو نظير وجوده فى الطبيعه 0.1% (80 بق 198 ) وهو نظير وجوده فى الطبيعه 10% ( 80 بق 199 ) ( 80 بق 200 ) ( 80 بق 201 ) ( 80 بق 202 ) و ( 80 بق 204 ) جميعها نظائر مستقره فى الطبيعه . (80 بق 197 ) نظير غير مستقر فى الطبيعه حيث يتحول إلى ذهب كما يلى : 80 بق > 79 ذ 197 + 1 ش 0 ( 80 بق 203 ) نظير طبيعى يشع أشعة بيتا السالبه ( 80 بق 205 ) نظير صناعى يشع إيضا أشعة بيتا السالبه و أما النظير الطبيعى فلونه فضى يميل إلى الحمره أما النظير الصناعى فنظيره يميل للون أكسيد الزئبق الأحمر مع كونه سائل ميتالك اذا و جدت ما هو مفيد لشرح هذه المعادلة سوف أكتبها و أحللها بإذن الله و اذا ما قدرت إعذرني على نسياني للمادة التي أخذتها في الجامعة عن التفكك و التحلل الإشعاعي أنا ممكن أراسل الدكتور الي أعطاني المادة و أشوفة الله يكتب إلي فيه الخير martin |
#10
|
|||
|
|||
مشاركة: بسرعة ممكن مساعدة
عزيزي مرتين القي نظره على هذا الموقع احنا بدنى الوصول الى طريقة العمل الزئبق 203 او 205 من هذه المعادلات
http://ie.lbl.gov/toi/nuclide.asp?iZA=800205 http://ie.lbl.gov/ensdf/ensdf2/a201_220/205Hg.enx وهذا ايضا بس مافهمت منيح الانجليزي دورت على نسخة منه بالفرنسية لم اجد يبدو مفيد جدا Production of Hg198 as a Possible Source of an Improved Wave-Length Standard Jacob H. Wiens Department of Physics, University of California, Berkeley, California Received 26 September 1946 The green line 5461A from any of the even isotopes of mercury is superior, in many respects, to the red line 6438A of cadmium for a primary standard of wave-length. The mercury isotope of mass 198 was produced by utilizing the nuclear transformation 79Au197+0n1→80Hg198+-1β0 One ounce of pure gold was sealed in a quartz tube and a section of 5-mm inside diameter quartz tube was sealed on the quartz-gold tube. The system was outgassed and 4-mm Hg pressure of spectroscopically pure argon was admitted and the tube was sealed. The gold was exposed to stray neutrons near the sixty-inch cyclotron for ten months. The gold was then heated and the mercury was condensed in the 5-mm quartz tube. The mercury vapor in the presence of argon gas was excited by means of a 100-megacycle oscillator and the spectrum was observed. The lines produced by the discharge were mercury lines, and the position of the lines of a Fabry-Perot etalon spectrogram agree with the position assigned by Schüler and Jones to the mercury isotope of mass 198. Larger quantities of gold exposed to known superior sources of neutrons will produce an adequate supply of the isotope for scientific purposes. ©1946 The American Physical Society ممكن يتفاعل اعضاء المنتدى ويشاركونا ببعض المعلومات و الاقترحات وانت اخي مرتين شو رايك في كل هذا ممكن بعض التوضيحات كما عندي سؤال هل نستطيع زيادة النيترونات و البروتونات لمادة ما الزئبق على سبيل المثال وما رئيكم بانبوب الذي يوجد خلف شاشة التلفزيون قراءت مره انه مدفع جيد للنيترونات او لاشعة بيتا لا اتذكر هذا جيدا بس ممكن حدا من المنتدى يفيدنا الموضوع مفيد وشيق |
الذين يشاهدون محتوى الموضوع الآن : 1 ( الأعضاء 0 والزوار 1) | |
انواع عرض الموضوع |
الانتقال إلى العرض العادي |
العرض المتطور |
الانتقال إلى العرض الشجري |
|
|