ملتقى الفيزيائيين العرب > منتديات أقسام الفيزياء > منتدى فيزياء الـكـــــم. | ||
مدخل إلى لميكانيكا الكم |
الملاحظات |
|
أدوات الموضوع | انواع عرض الموضوع |
|
#1
|
|||
|
|||
مدخل إلى لميكانيكا الكم
يهدف هذا الموضوع إلى تقديم نظرة عامة و موجزة للشخص العادي عن أهمية ميكانيكا الكم وغرابتها. ومع الأسف، فإن معظم الناس يعتقدون أنهم بحاجة إلى عقل كعقل آينشتاين من أجل فهم ميكانيكا الكم ولذلك فإنهم لا يخوضون فيها أبدا. (و من الطريف أن آينشتاين نفسه لم يكن يؤمن بأن ميكانيكا الكم نظرية صحيحة !) حتى أن بعض الكيميائيين اعتقدوا بذلك أيضا . بل إن أكثر أقسام الكيمياء الفيزيائية قد وضعت الصورة التي في الأسفل لتمثيلها، و هي منتهية الصلاحية منذ ما يقارب المئة عام. لذلك أرجو أن تقرأ الموضوع و أن تأخذ غطسة في محيط من المعلومات التي أجدها منعشة تماماً |
#2
|
|||
|
|||
مشاركة: مقدمة مبسطة لميكانيكا الكم
إذا كانت الصورة في الأعلى هي فكرتك عن الذرة، إلكترونات تدور حول النواة بهذه الطريقة، فإن فكرتك منتهية الصلاحية منذ 70 عاما. و قد حان الوقت لتفتح عينيك للعالم الحديث لميكانيكا الكم! إن الصورة في الأسفل تبين بعض المخططات للأماكن الأكثر احتمالا لوجود الإلكترون في ذرة الهيدروجين. ( النواة في مركز كل مخطط ). |
#3
|
|||
|
|||
مشاركة: مقدمة مبسطة لميكانيكا الكم
ما هي ميكانيكا الكم؟
بكل يسر، ميكانيكا الكم هي دراسة المادة و الإشعاع في المستوى الذري . لماذا نشأت ميكانيكا الكم؟ في أوائل القرن العشرين كانت بعض التجارب قد أنتجت نتائج لا يمكن تفسيرها بالفيزياء التقليدية ( فيزياء جاليليو و نيوتن، و غيرهما ) . فعلى سبيل المثال، كان من المعروف أن الإلكترونات تدور حول نواة الذرة. و على أية حال، إذا كانت تفعل ذلك بطريقة مشابهة لدوارن الكواكب حول الشمس؛ فإن الفيزياء التقليدية تتنبأ بأن هذه الإلكترونات سوف تتحرك بشكل لولبي لتقع داخل النواة في جزء من ثانية. و من الواضح أن هذا لا يحدث، و إلا فإن الحياة التي نعرفها لن تكون. (الكيمياء تعتمد على التفاعلات بين الإلكترونات، و الحياة تعتمد على الكيمياء) . إن هذا التنبؤ الخاطئ مع غيره من بعض التجارب التي استعصى تفسيرها على الفيزياء التقليدية، قد بيَّن للعلماء أن شيئا جديدا يجب أن يظهر ليفسر العلوم في المستوى الذري. إذا كانت الفيزياء التقليدية غير صحيحة ، لماذا نظل نستخدمها ؟ إن الفيزياء التقليدية هي نظرية خاطئة، و هي خاطئة -بشكل كبير جداً- فقط عند التعامل مع الأمور الصغيرة جداً (في حجم الذرة، حيث تستخدم ميكانيكا الكم) أو الأمور السريعة جداً (بالقرب من سرعة الضوء، حيث تحل مكانها النسبية). أما بالنسبة للأمور الحياتية، و التي هي أكبر بكثير من حجم الذرة، و أبطأ بكثير من سرعة الضوء فإن الفيزياء التقليدية تعمل فيها عملاً بارعاً، بالإضافة إلى أن استخدامها أسهل بكثير من كل من ميكانيكا الكم أو النسبية ( إذ كلاهما يتطلبان كمية مكثفة من الرياضيات ). ما أهمية ميكانيكا الكم ؟ إن القضايا التالية هي من بين أكثر الأشياء أهمية و هي التي تستطيع ميكانيكا الكم أن تصفها ، بينما لا تستطيع ذلك الفيزياء التقليدية : عدم اتصال الطاقة. ازدواجية الصفة الموجية – الجسيمية للضوء و المادة. النفق الكمي. مبدأ الارتياب لهايزنبرج. برم الجسيم. |
#4
|
|||
|
|||
مشاركة: مقدمة مبسطة لميكانيكا الكم
عدم اتصال الطاقة
إذا نظرت إلى طيف الضوء المـُشَع من الذرات النشطة ( كالضوء البرتقالي–الأصفر الصادر من بخار الصوديوم المستخدم في أضواء الشوارع، أو الضوء الأزرق–الأبيض من مصابيح بخار الزئبق ) سوف تلاحظ أنها مكونة من خطوط منفردة لألوان مختلفة. هذه الخطوط تمثل انفصال مستويات الطاقة للإلكترونات في تلك الذرات المثارة. عندما يكون إلكترونا ما في حالة ذات طاقة عالية ثم يقفز إلى حالة أدنى، فإن الذرة تشع فوتونا من الضوء يطابق تماما الفرق في الطاقة لهذين المستويين (حفظ الطاقة). كلما كبر ذلك الفرق؛ كلما كان الفوتون نشطا أكثر واقترب لونه من النهاية البنفسجية من الطيف. و إذا لم تكن الإلكترونات مقيدة في مستويات طاقة منفصلة؛ فإن طيف الذرة المثارة سيكون ألوانا متصلة منتشرة من الأحمر إلى البنفسجي بلا خطوط مفردة . إن مفهوم انفصال مستويات الطاقة يمكن أن يمثـَّل من خلال مصباح ضوئي يعمل عند ثلاثة قدرات كهربية مختلفة. فالمصباح ذو 40\75\115 واط يمكن أن يضيء عند هذه القيم فقط، و عندما تنتقل من وضع إلى الذي يليه، فإن القدرة تقفز مباشرة إلى الوضع الآخر بدلا من أن تزداد تدريجيا. إنها الحقيقة القائلة بأن الإلكترونات يمكن أن توجد فقط في مستوى الطاقة المنفصل و الذي يمنعها من السقوط بشكل لولبي إلى داخل النواة، كما تتنبأ الفيزياء التقليدية. إن تكميم الطاقة هذا مع بعض الخواص الذرية المكممة الأخرى، هو ما يعطي ميكانيكا الكم هذه التسمية. |
#5
|
|||
|
|||
مشاركة: مقدمة مبسطة لميكانيكا الكم
ازدواجية الصفة الموجية – الجسيمية للضوء و المادة
في عام 1690م وضع كرستيان هيجنز نظرية تقول: إن الضوء مؤلف من موجات، بينما في عام 1704م وضّح نيوتن أن الضوء مكون من جسيمات صغيرة. و قد دعمت التجارب كلا النظريتين. على أية حال، لم تستطع نظرية الجسيم التام و لا نظرية الموجة التامة أن تفسرا كل الظواهر المرتبطة بالضوء! لذا فإن العلماء أخذوا يفكرون في الضوء كجسيم و موجة في اللحظة ذاتها. في عام 1923م افترض لويس دي برولي أن الجسيم المادي يمكن أن يُظهر خصائص موجية، و في عام 1927م ثبت ( بواسطة ديفيسون و جيرمر ) أن الإلكترونات يمكن أن تتصرف بحق مثل الموجة. كيف يمكن لشيء ما أن يكون جسيما و موجة في نفس اللحظة؟ نقول، إنه من الخطأ أن نعتقد أن الضوء سيل من الجسيمات تتحرك إلى الأعلى والأسفل بطريقة موجية. في الحقيقة، إن الضوء و المادة يوجدان كجسيمات، و ما يتصرف كموجة هو احتمال أين سيكون هذا الجسيم. إن السبب في كون الضوء يظهر أحيانا كموجة؛ هو أننا نلاحظ تراكم العديد من جسيمات الضوء موزعة في احتمالات أين سيكون كل جسيم منها. على سبيل المثال، افترضْ أنه لدينا آلة رمي النبال التي لها فرصة قدرها 5% لتبلغ نقطة المركز، و 95% لتبلغ الحلقة الخارجية وليس لها أي فرصة لأن تبلغ أي مكان آخر في رقعة النبال. الآن افترض أننا تركنا الآلة لتقذف 100 نبلة، و نبقيها كلها عالقة في الرقعة، يمكننا أن نرى كل نبلة منفردة (لذا نعرف أنها تتصرف كجسيمات) و لكن بإمكاننا أيضا أن نرى أنموذجا في الرقعة مكونا من حلقة كبيرة من النبال تحيط حشدا صغيرا في المنتصف. هذا الأنموذج هو تراكم النبال المنفردة في احتمالات أين يمكن أن تكون كل نبلة قد علقت، و تمثل السلوك الموجي للنبال. (أوَصلت الفكرة؟) |
#6
|
|||
|
|||
مشاركة: مقدمة مبسطة لميكانيكا الكم
النفق الكمي
هذه إحدى أكثر الظواهر التي يمكن أن تتضح من ميكانيكا الكم إمتاعا، و بدونها ما كانت رقائق الكمبيوتر لتظهر، و لكان الكمبيوتر الشخصي قد وسع تقريبا غرفة كاملة. و كما أشرنا سابقا، فإن الموجة تعيِّن احتمال أين سيكون الجسيم. عندما يصادف ذلك الاحتمال أي حاجز طاقوي؛ فإن معظم الموجة سوف ينعكس مرتدا، و لكن جزءا صغيرا منها سوف يتسرب خلال الحاجز. إذا كان الحاجز صغيرا بقدر كاف فإن تلك الموجة التي تسربت سوف تواصل مسيرها إلى الجانب الآخر منه. حتى لو لم يكن ذلك الجسيم يملك طاقة كافية ليجتاز الحاجز، تظل هناك احتمالية أن يتسلل نفقيا من خلاله. دعنا نفترض أنك ترمي كرة مطاطية على الحائط. أنت تعلم أنك لا تملك الطاقة الكافية لترميها خلال الحائط (أي تخترقه)، لذا فإنك تتوقع دوما أنها سوف ترتد. على أية حال، فإن ميكانيكا الكم تقول إنه يوجد احتمال صغير بأن الكرة قد تخترق الحائط (دون أن تلحق به أي ضرر) لتكمل مسيرها في الجهة الأخرى! مع ذلك فإن لأشياء كبيرة مثل كرة المطاط؛ تلك الاحتمالية تكون صغيرة جدا لحد أنك قد تقذف الكرة لملايين السنين و لن تراها تخترق الحائط. و لكن مع أشياء صغيرة مثل الإلكترون؛ فإن النفقية حدث يومي. على الجانب الآخر من النفقية، عندما يصادف جسيم انخفاضا في الطاقة فهناك احتمالية صغيرة لأن ينعكس. و بتعبير آخر، إذا كنت تدحرج مرمرا على منضدة مسطحة مستوية؛ فهناك فرصة صغيرة أن ترتد الرخامة عندما تصل إلى الحافة بدلا من أن تسقط على الأرض! ومرة أخرى، لأشياء كبيرة مثل المرمر فإنك لن ترى أبدا شيئا مثل هذا يحدث، و لكن للفوتونات (الجسيمات الضوئية عديمة الكتلة) فإنه حدث حقيقي جدا. |
#7
|
|||
|
|||
رد: مشاركة: مقدمة مبسطة لميكانيكا الكم
:s_thumbup:
|
#8
|
|||
|
|||
مشاركة: مقدمة مبسطة لميكانيكا الكم
السلام عليكم ورحمة الله وبركاته
جزاك الله خيراً على ما أجدت وأبدعت وأفدت (وطلب بسيط منك) إذا كان يمكن أن تضعه عبارة عن ملف مضغوط من أجل أن نستطيع تحميله والاستفادة منه اكرر لك شكري وتقديري |
#9
|
|||
|
|||
مشاركة: مقدمة مبسطة لميكانيكا الكم
يعطيك ألف عافية موضوع رائع ومبسط
|
#10
|
|||
|
|||
مشاركة: مقدمة مبسطة لميكانيكا الكم
روعة مشرفنا الفاضل ’,,,, روعة لك مني خالص الود والتقدير تحياتي لك وللجميع
__________________
نحن قوم إذا ضاقت بنا الدنيا اتسعت لنا السماء فكيف نيأس ؟!! |
الذين يشاهدون محتوى الموضوع الآن : 3 ( الأعضاء 0 والزوار 3) | |
انواع عرض الموضوع |
الانتقال إلى العرض العادي |
العرض المتطور |
الانتقال إلى العرض الشجري |
|
|