الملاحظات |
|
أدوات الموضوع | انواع عرض الموضوع |
#1
|
|||
|
|||
طرق العد
طرق العد
سأحاول أن أتناول هنا شرح بعض طرق العد البسيطة و التي قد نحتاجها في بعض دراستنا أو في الحياة أول هذه المبادئ نظرية: إذا تكونت عملية ما من خطوتين ،الأولى يمكن إجراؤها بعدد m من الطرق و الثانية بعدد n من الطرق، فإن العملية بأكملها قد تتم بعدد mn طريقة و هذه يعتبر من أبسط القواعد و غالبا ما نطبقها بدون الانتباه لذلك فمثلا عندما نرمي قطعة نقد مرتين نقول أن هناك 4 إمكانات مختلفة لظهور الصورة و الكتابة في المرتين، و كذلك الأمر لو أردنا اختيار رقمين من الأرقام العشرة بدون قيود فإن هناك 10x 10 =100 طريقة لظهور العدد الأول و الثاني مرتين. حسنا ماذا لو أردنا اختيار رقمين مختلفين سيكون لدينا 10x9=90 طريقة للرقمين الأول و التاني. و هذه النتائج يعبر عنها على شكل أزواج مرتبة فمثلا في التجارب السابقة الإمكانات يمكن كتابتها 1- { (ص،ص)، (ص،ك)، (ك،ص)، (ك،ك) }. 2- { (0،0)، (0،1)،(2،0)،(0،3)،...، (0،1)، (1،1)،(2،1)،(3،1)،...، ....(10،10)} 3- { (0،1)،(1،0)،(0،2)، (2،0)، (0،3)،...،(10،9)} حسنا ماذا لو رمينا قطعتي نقد مختلفتين هل سيختلف عدد الإمكانات عما حسبناه من إلقاء قطعة نقد واحدة مرتين بالطبع لا ، سيظل عدد الإمكانات بالطبع أربعة هذه النقطة مهمة جدا لأننا في هذه الحالة أمامنا عملية تتكون من خطوة واحدة و لكني جزأت تلك الخطوة لأجزاء سهلت علي عملية الحساب ، و هذا ما يحدث في الواقع، فالعمليات في غالبية المسائل ليست على خطوات و لكني أتخيل أن العملية تتم على مراحل و هنا يجب توخي الحذر بأن العملية الناشئة و العملية الأساسية لها بالفعل نفس عدد الامكانات. لفهم ذلك تخيل لو أن كانت قطعتي النقد في المثال السابق كانت متشابهة و رميت مرة واحدة هل سيختلف الجواب؟ ما رأيك؟ ...................... إذن القاعدة في منتهى السهولة و لكن مهلا يجب أن ننتبه أن هذه القاعدة حينما تستخدم فإنها تعطينا النواتج مرتبة فمثلا عند اختيار رقمين فإن الامكانية 3،7 تختلف عن 7،3 و في القاء قطعة النقد مرتين ظهور صورة مرة واحدة يقابله إمكانيتين و ليس واحدة، ما هما؟ إذن لا تنفع هذه الطريقة لحساب عدد طرق اختيار 4 طلاب من عشرين طالب لتمثيل المدرسة في مسابقة ما، كيف يمكن فعل ذلك؟ سنرى هذا فيما بعد و لكن بعد أن نفهم قاعدتنا الأولى فهما جيدا ستقول القاعدة صارت واضحة الآن لنر ذلك بكم طريقة يمكنك اختيار الجامعة و التخصص لطالب أنهى الثانوية العامة ، أمامه أربع جامعات و في كل منها 5 تخصصات متاحة؟ ............................. بكم طريقة يمكنك أن تدرس 4 ساعات على الأكثر في يومين؟ هل يمكن تطبيق القاعدة و لماذا؟ حسنا إذا فهمنا القاعدة جيدا يمكن ببساطة أن نعممها إذا كانت العملية تتم بعدد من الخطوات K و كانت الخطوة الأولى يمكن إجراؤها بعدد m1 طريقة و الثانية بعدد m2 طريقة و هكذا و الأخيرة بعدد mk طريقة فإن العملية بأكملها يمكن إجراؤها بعدد m1 x m2 x …mk طريقة مختلفة بمعنى أن الطالب إذا كان بإمكانه بعد إكماله الجامعة أن يكمل دراساته العليا و متاح أمامه 3 تخصصات بكم طريقة تتم العملية كلها؟ تعليق كما أوضحت سابقا هذه القاعدة بسيطة جدا و نحن نطبقها غالبا بصورة بديهيية و لكن وضعها في صورة نظرية يسهل علينا تأطير العلم و تفسير كل شيء له علاقة بطرق العد من نقطة الانطلاق تلك و من ناحية أخرى هناك أسئلة كثيرة ليست سوى تطبيق سهل للنظرية و لكن يغيب ذلك عن بالنا فما رأيكم بهذا السؤال الآن بكم طريقة يمكن الاجابة بطريق عشوائية على اختبار يتكون من عشرين سؤال (صح و خطأ)؟ و بكم طريقة يمكن الاجابة عليها كلها بطريقة صحيحة؟ |
الذين يشاهدون محتوى الموضوع الآن : 1 ( الأعضاء 0 والزوار 1) | |
انواع عرض الموضوع |
الانتقال إلى العرض العادي |
الانتقال إلى العرض المتطور |
العرض الشجري |
|
|