ملتقى الفيزيائيين العرب > منتديات أقسام الفيزياء > منتدى الرياضيات. | ||
" المسابقة الرياضية الكبرى " |
الملاحظات |
|
أدوات الموضوع | انواع عرض الموضوع |
#181
|
|||
|
|||
رد: " المسابقة الرياضية الكبرى "
سلاام .. أخ مهند فيه اثبات ثاني غير اللي حطيته ؟؟ اذا كان فيه باستخدام التطابقات ياليت تحطه ..
|
#182
|
|||
|
|||
رد: " المسابقة الرياضية الكبرى "
أختي نورة ما رأيك في الاثبات الثاني لي بالتطابق مود 7 اذا اخذنا في الاعتبار ان الباقي التكعيبي معيار 7 هو 0 او 1 او -1 ؟
|
#183
|
|||
|
|||
رد: " المسابقة الرياضية الكبرى "
السلاام عليكم .. أخي ابراهيم ..
الاثبات الاول للأسف لم اقتنع به واشعر انه لا يعتمد على اسس رياضية وبعض المعلومات التي وضعتها اشعر بأنها تحتاج لاثبات .. ""ما اذا وضعت m!+5 لـ m>5 كمجموع حدين بكون حد فيهم يقبل القسمة على 125 والثاني لا"" لماذا الثاني لا ؟؟ على اي اساس اعتمدت .. لو أنك اعتمد في هذه فقط على برهان لوافقتك .. اخي في قولك "" مود 7 اذا اخذنا في الاعتبار ان الباقي التكعيبي معيار 7 هو 0 او 1 او -1 "" طبعا الباقي التكعيبي ومعيار .. هذه بالنسبة لي كلمات جديدة لأني درستها بالانجليزي لكن اذا كنت تقصد أنها تطبق القاعدة التالية " س^3 = (- 1 أو +1 أو 0) (mod 7) فهذه متحققة و أجدت في اختيارها ان كانت هي التي تقصد .. هل تقصد اخي انك أولا تحققت من ان m =5 وهي صحيحة ثم قلت يجب ان ارى ما هو اكبر من الخمسة لكون الاصغر منها لم يحقق.. ولما عوضت بالعلاقة س^3 = (- 1 أو +1 أو 0) (mod 7) وضعت 5 مكان (- 1 أو +1 أو 0) ثم قلت بأنه 5 ليس باقي تكعيبي معيار 7 .. اليس كذلك؟؟ وقد عوضت بالخمسة لأنك تحققت من صحتها من قبل .. اذا كان كذلك فأنا اعتقد انه اثبات صحيح بل واحييك عليه ولكن ينقصه الشرح والتبيان لأنه اول ما قرأته لم اعرف لماذا اخترت مود 7 حيث أنك لم تشرح وتبين في القاعدة: س^3 = (- 1 أو +1 أو 0) (mod 7) ولم أفهم ذلك الا بعد ان شرحت لي ذلك في قولك :مود 7 اذا اخذنا في الاعتبار ان الباقي التكعيبي معيار 7 هو 0 او 1 او -1.. احييك .. حل رائع .. تحيتي.. |
#184
|
|||
|
|||
رد: " المسابقة الرياضية الكبرى "
حياك الله أختي نورة وأشكرك على ردك
سأحاول عرض اثبات هذه الخطوة بصورة أفضل والذي لن يعجب أخي مهند فهو لا يحب التعقيد الآن لدينا بضرب طرفي هذه المعادلة في : والآن يكفي أن نثبت أن حتى نثبت أن نقسم الأعداد لقسمين الأول m=6,7,8,9 ويمكن حسابها مباشرة والتأكد من أنها لا تقبل القسمة على 25 والثاني والعلاقة صحيحة لكل m>10 حيث أنه نتيجة الضرب في 10 ستكون الخانة الأخيرة صفرا وبالتالي اذا طرحنا 1 فلن يكون الناتج قابلا للقسمة على 25 وكمثال للتوضيح فالحد الثاني لا يقبل القسمة على 125 وبالتالي m!+5 كذلك لا يقبل القسمة على 125 وذلك لكل m>5 وبالتالي لا يوجد مكعب كامل على الصورة m!+5 لكل m>5 وهكذا انتهى البرهان إن لم أكن مخطئا
وشكرا لك على التوضيح فأنا لم أقل إلا "5 ليس باقي تكعيبي معيار 7" وإن كان هذا يعني ضمنا أن " 5 ليست 1 أو -1 أو 0" ولكن كان لابد من التوضيح بارك الله فيك |
#185
|
|||
|
|||
رد: " المسابقة الرياضية الكبرى "
أعجبني حلك كثيرا أخي ابراهيم وأعتقد انك على صواب .. بارك الله فيك ..
|
#186
|
|||
|
|||
رد: " المسابقة الرياضية الكبرى "
ما بآآل مسابقتنآ الجميلة توقفت ..؟
|
#187
|
|||
|
|||
رد: " المسابقة الرياضية الكبرى "
اهلا ، نسيت المسابقة تماما ، يعطيك العافية اخت نورة على التذكير ..
اخي ابراهيم حلولك صحيحة والاخت نورة كذلك ،، نعود مع نوعية من المسائل اقول عنها انها " حبيبتي " السؤال بسيط جدا ولكن للتنشيط ،، اذا علمت أن فأثبت أن |
#188
|
|||
|
|||
رد: " المسابقة الرياضية الكبرى "
ليكن
فأثبت أن الفترة المغلقة تحوي مضاعف للعدد |
#189
|
|||
|
|||
رد: " المسابقة الرياضية الكبرى "
يآآلبى الرياضيات بس ,, أخيراً حطيت أسئلة ,, للأسف السؤال الأول مر علي .. والثاني مر علي مقارب له .. عالعموم .. مشكور أخي مهند ..
|
#190
|
|||
|
|||
رد: " المسابقة الرياضية الكبرى "
لتكن أعداد حقيقة ليست بالضرورة أن تكون موجبة و n عدد زوجي فأثبت أن ملاحظة : لا يوجد هنت ولا " تنحيزة " على قولة اهل الشرقية << ما يقصد أحد |
الذين يشاهدون محتوى الموضوع الآن : 1 ( الأعضاء 0 والزوار 1) | |
انواع عرض الموضوع |
العرض العادي |
الانتقال إلى العرض المتطور |
الانتقال إلى العرض الشجري |
|
|