ملتقى الفيزيائيين العرب > منتديات أقسام الفيزياء > منتدى الرياضيات. | ||
مسائل وحلول - هندسة مستوية للمرحلة الثانوية |
الملاحظات |
|
أدوات الموضوع | انواع عرض الموضوع |
#31
|
|||
|
|||
رد: مسائل وحلول - هندسة مستوية للمرحلة الثانوية
من المعلوم أن من خصائص المثلث المتساوى الأضلاع ما يلى : زوايا رءوسه متساوية ، وقياس كل منها = 60 درجة الأعمدة المقامة من رءوس المثلث على الأضلاع المناظرة تنصفها ، وفى نفس الوقت تنصف زاوية الرأس وبالتالى تكون منصفات زوايا الرأس هى ارتفاعات المثلث وفى نفس الوقت هى منصفات الأضلاع وعلى ذلك تكون نقطة التقاطع واحدة للجميع وهى مركز المثلث ومن المعلوم أن مركز الدائرة الداخلية للمثلث هى مركز تقابل منصفات زواياه ، ويكون البعد بين مركز الدائرة وأضلاع المثلث متساوية وتساوى نصف قطر الدائرة الداخلية مركز المثلث المتساوى الأضلاع يقسمه الى ثلاث مثلثات متطابقة : م أ ب ، م ب ج ، م أ ج ولحل التمرين ، توجد عدة طرق : باستخدام النتيجة (مباشرة ): نصف قطر الدائرة الداخلية لأى مثلث = مساحة المثلث ÷ نصف محيط المثلث مساحة المثلث = 1/2*(ب ج)*(أ د) = 1/2*(ب ج)*(أ ب).جا60 = 1/2*12*12*جذر3/2 = 36 جذر3 سم^2 نصف محيط المثلث = [(أ ب) + (ب ج) + (ج أ)] ÷ 2 = 18 سم نق = 36 جذر3 / 18 = 2 جذر3 سم باستخدام برهان النتيجة السابقة فى حل التمرين : العمل : نصل مركز الدائرة الداخلية ( وهى مركز المثلث المتساوى الأضلاع ) برءوس المثلث : م أ ، م ب ، م ج ينقسم المثلث أ ب ج الى ثلاثة مثلثات داخلية متطابقة : م أ ب ، م ب ج ، م ج أ قاعدة كل مثلث = طول ضلع المثلث ارتفاع المثلث = نصف قطر الدائرة الداخلية = نق مساحة المثلث أ ب ج = 3*مساحة أحد المثلثات الداخلية مساحة المثلث = 1/2*قاعدة المثلث*ارتفاعه مساحة المثلث أ ب ج = 1/2*(ب ج)*(أ د) = 36 جذر3 مساحة أحد المثلثات الداخلية المتطابقة = 1/2*12*نق = 6 نق إذن : 36 جذر3 = 3*6*نق ـــــــــــــــ> ومنه نق = 2 جذر3 سم باستخدام خصائص المثلث الثلاثينى الستينى ، والنسب المثلثية : المثلث م أ و : أ و = 1/2*(أ ب) = 6 سم م و = نق زاوية م أ و = نصف زاوية الرأس أ = 30 درجة م و تقابل الزاوية 30 درجة فى المثلث القائم م أ و فيكون : م أ = 1/2 الوتر م أ م أ = 2*نق جتا(م أ و) = و أ / م أ جتا30 = 6 / 2 نق = 3 / نق = جذر3 / 2 جذر3*نق = 6 = 3*2 ـــــــــــــــــــ> ومنها : نق = 2 جذر3 سم باستخدام خصائص المثلث الثلاثينى الستينى ، ونظرية فيثاغورث : المثلث م أ و : أ و = 1/2*(أ ب) = 6 سم م و = نق زاوية م أ و = نصف زاوية الرأس أ = 30 درجة م و تقابل الزاوية 30 درجة فى المثلث القائم م أ و فيكون : م أ = 1/2 الوتر م أ م أ = 2*نق (م أ)^2 = (و أ)^2 + (م و)^2 (2*نق)^2 = (6)^2 + (نق)^2 3*نق^2 = 6^2 جذر3*نق = 6 = 3*2 ـــــــــــــــــــ> ومنها : نق = 2 جذر3 سم |
#32
|
|||
|
|||
رد: مسائل وحلول - هندسة مستوية للمرحلة الثانوية
|
#33
|
|||
|
|||
رد: مسائل وحلول - هندسة مستوية للمرحلة الثانوية
أ ب ج د متوازي أضلاع وَ هـ نقطة على امتداد ب ج المستقيم (أ هـ) يقطع [ب د] في س و يقطع [ج د] في ص برهن أن : هـ س^2 - أ س^2 = هـ س×هـ ص |
#34
|
|||
|
|||
رد: مسائل وحلول - هندسة مستوية للمرحلة الثانوية
|
#35
|
|||
|
|||
رد: مسائل وحلول - هندسة مستوية للمرحلة الثانوية
|
#36
|
|||
|
|||
رد: مسائل وحلول - هندسة مستوية للمرحلة الثانوية
نفرض أن طول ضلع المربع = 2 ل نرسم محورين متعامدين من منتصفات أضلاع المربع يتقاطعان فى مركز المربع و ، ويقسم المربع الى 4 مربعات صغيرة متطابقة - محورى التماثل الجزء المحصور للنجمة فى كل ربع متماثلة تم تكبير ربع المربع وبداخله الجزء المحصور من النجمة العمل : نصل ب ج نقيم من نقطة م عمودين : م ى على و ب ، م ف على و ج خطوات الاثبات : ج د ، ب هـ متوسطان فى المثلث ج ب و ويتقاطعان فى نقطة م التى تقسم كل متوسط بنسبة 2 : 1 من جهة رأس المثلث إذن : ب م / ب هـ = ج م / ج د = 2/3 المثلثان القائمان الزاوية و : ب هـ و ، ج د و متطابقان ، وينتج أن : ب هـ = ج د ، زاوية و ب هـ = زاوية و ج د ب م= 2/3 ب هـ ، ج م = 2/3 ج د ـــــــــ> ب م = ج م المثلثان القائمان الزاوية ب م ى ، ج م ف متطابقان حيث ب م = ج م ، زاويتى ى ، ف قائمتين ، زاوية م ب ى = زاوية م ج ف وينتج أن : م ى = م ف ــــــــــ> الشكل م ى و ف مربع فى المثلث ب و هـ : م ى توازى القاعدة هـ و ، ب م / ب هـ = 2/3 إذن م ى / هـ و = 2/3 ــــــــــــ> م ى = 2/3*ل/2 = ل/3 الجزء من النجمة المحصور داخل ربع المربع يتكون من : المربع م ى و ف + المثلث ب م ى + المثلث ج م ف مساحة المربع م ى و ف = (ل/3)^2 = ل^2 / 9 مساحة المثلث ب م ى = مساحة المثلث ج م ف = 1/2*2ل/3*ل/3 = ل^2 / 9 مساحة الجزء المحصور للنجمة = ل^2 /9 + 2*ل^2 /9 = ل^2 /3 مساحة النجمة = 4*ل^2 /3 مساحة الربع للمربع = ل^2 مساحة المربع = 4*ل^2 مساحة النجمة الى مساحة المربع = 1/3 |
#37
|
|||
|
|||
رد: مسائل وحلول - هندسة مستوية للمرحلة الثانوية
أ ب ج د متوازي أضلاع مركزه هـ . لتكن النقط : س ; ص ; ع ; ل تنتمي على التوالي للأضلاع [ا ب] ; [ب ج] ; [ج د] ; [د ا] بحيث : ا س = ب ص = ج ع = د ل ــ بين أن الرباعي س ص ع ل متوازي أضلاع مركزه هـ . |
#38
|
|||
|
|||
رد: مسائل وحلول - هندسة مستوية للمرحلة الثانوية
|
#39
|
|||
|
|||
رد: مسائل وحلول - هندسة مستوية للمرحلة الثانوية
|
#40
|
|||
|
|||
رد: مسائل وحلول - هندسة مستوية للمرحلة الثانوية
|
الذين يشاهدون محتوى الموضوع الآن : 1 ( الأعضاء 0 والزوار 1) | |
انواع عرض الموضوع |
العرض العادي |
الانتقال إلى العرض المتطور |
الانتقال إلى العرض الشجري |
|
|